Информация » Как ген, хромосома и клетка противодействуют среде и избегают гибели » Как хромосома противодействует влияниям среды и избегает гибели

Как хромосома противодействует влияниям среды и избегает гибели
Страница 1

Хромосома, в основе поведения которой лежит случайность, не может избежать воздействия среды, но организованная хромосома способна к этому по той простой причине, что ей не остается ничего другого. Коль скоро хромосоме свойственна упорядоченность, ей внутренне присущи определенные правила поведения. Обладая такими собственными правилами, хромосома, очевидно, должна лишь следовать им, не поддаваясь воздействиям внешних факторов.

В основе упорядоченности этой клеточной органеллы лежит несколько механизмов.

1. Хромосома строилась в соответствии с химическим принципом самосборки. Самосборка неизбежна и иерархична; она создала собственные каналы молекулярной организации, обеспечивающие высокую степень независимости от среды.

2. Хромосома – замкнутая система. На первый взгляд эта черта хромосомы в данном контексте кажется несущественной, но она имеет решающее значение для ее эволюции. Хромосома – это не просто "нитка генов" или "кусочек ДНК"; на обоих концах ее замыкают четко выраженные особые участки – теломеры и центромеры. Обычно хромосома заканчивается на обоих концах униполярными теломерами, но у телоцентрических хромосом на одном конце эту функцию несет центромера. Без теломер хромосома гибнет. Хромосома представляет собой компартмент, а поэтому она способна сама создавать свою организацию. В хромосоме бактерий нет высокоразвитых теломер, имеющихся в хромосомах эукариот. Она разрешила проблему проще – с помощью кольцевидной формы. Кольцо – это также замкнутая система, что облегчает развитие внутренней организации.

3. Хромосома обладает целым арсеналом средств, позволяющих ей следовать собственным правилам и избегать любых посягательств на свою целостность, но в то же время она способна изменять свою структуру и функцию упорядоченным образом. Этот процесс направляется исключительно физико-химическими принципами, по которым создавалась ее первоначальная структура. К таким средствам относятся: 1) перестройки, направляющие мутационный процесс так, что допускается возникновение только данного фенотипа; 2) эффекты положения, изменяющие молекулярные функции генов; 3) наличие нуклеотидных последовательностей, способных изменять функцию и замещать другие участки ДНК, принимая на себя их функции; примером служат центромеры, способные брать на себя функцию теломер в телоцентрических хромосомах; 4) наличие транспозонов, дающих возможность хромосоме вводить участки в определенные сайты. Вместе с эписомами бактерий они позволяют вносить упорядоченность в мутации и перестройки.

Хромосомное поле выявляет строгую упорядоченность в центромеро-теломерном участке

В настоящее время все еще преобладает мнение, что в мутационном процессе и в организации хромосом главную роль играет случайность. Случайность – самая простая и самая удобная концепция, поскольку она позволяет сразу объяснить все явления, которые со строгих физико-химических позиций все еще далеко не ясны.

Недавние молекулярно-биологические исследования привлекли внимание к упорядоченным процессам построения генов и хромосомных перестроек у эукариот. Кроме того, появляются основания полагать, что мутационный процесс может направляться путем регуляции физико-химических событий, происходящих в ДНК.

Однако эукариотическая хромосома с ее гигантскими размерами все еще остается далеко не изученной на молекулярном уровне как целостная структура, т.е. как вполне определенная и строго ограниченная единица. Поэтому большинство генетиков продолжают рассматривать ее как некую случайную конструкцию.

Еще в 1950-х годах были получены данные, указывающие на жесткость структуры эукариотической хромосомы. Эта структура сформировалась в виде градиентов хромомеров, которые у более чем 70 видов начинаются у центромеры. Они сохраняют свою организацию независимо от вариаций длины хромосом. Это привело к созданию концепции хромосомного поля, согласно которой между разными участками одной хромосомы существуют определенные взаимоотношения, детерминируемые главным образом расположением центромер и теломер. В то время сведений о локализации генов было мало; не было и молекулярно-биологических методов, которые можно было бы использовать для проверки такой концепции. Однако структурные данные столь убедительно свидетельствовали в пользу жесткой и упорядоченной организации, что были сделаны следующие предсказания: 1) гены располагаются в центромеро-теломерном поле неслучайным образом; 2) каждый структурный ген и каждая последовательность ДНК стремятся занять в этом поле оптимальное место; 3) существует иерархия хромосомных участков и взаимодействие между ними, оказывающие влияние на их функцию; 4) перестройки происходят случайным образом, но следуют правилам, которые сохраняют общую структуру поля. За последние годы были собраны данные, подтвердившие справедливость этих предсказаний: 1) у более чем 700 видов, от водорослей до человека, была установлена локализация генов рРНК, которые расположены в теломерах, причем это расположение настолько регулярно, что его можно описать линейным уравнением; 2) большая часть других последовательностей ДНК, которые могут быть распознаны у большого числа видов, занимает определенное положение в пределах поля, т.е. некоторые располагаются вблизи теломер, другие вблизи центромер, а третьи – в медиальных областях плечей; 3) цитогенетические исследования на молекулярном уровне, проведенные рядом авторов, показали, что местоположение данной последовательности ДНК имеет решающее значение для определения ее функции.

Страницы: 1 2 3


Похожие материалы:

Описание предлагаемой методики
Показания к применению методики: а) контроль за циркуляцией устойчивых к дезинфектантам штаммов бактерий в лечебно-профилактических учреждениях и эпидемических очагах; б) расследование причин неэффективности дезинфекционных мероприятий; в ...

Характер взаимосвязи процессов клеточного деления
Между процессом накопления критической массы клетки, репликацией ДНК и построением клеточной перегородки не обнаружено облигатно-реципрокной связи, при которой подавление одного из процессов тормозило бы другие и наоборот. Например, в слу ...

Современная генетика.
Если век XIX по праву вошел в историю мировой цивилизации как Век Физики, то стремительно завершающемуся веку XX-му, в котором нам счастливилось жить, по всей вероятности, уготовано место Века Биологии, а может быть, и Века Генетики. Сер ...