Информация » Происхождение жизни на Земле » Этапы химической и предбиологической эволюции на пути к жизни

Этапы химической и предбиологической эволюции на пути к жизни
Страница 1

Гипотеза А.И. Опарина способствовала конкретному изуче­нию происхождения простейших форм жизни. Она положила начало физико-химическому моделированию процессов обра­зования молекул аминокислот, нуклеиновых оснований, угле­водородов в условиях предполагаемой первичной атмосферы Земли.

После работ немецкого исследователя С. Мюллера и других стало известно, что под воздействием физических излу­чений эти биоорганические молекулы могут образовываться в самых различных смесях, содержащих водород, азот, аммиак, воду, углекислый газ, метан, синильную кислоту и т.п.

Имеется ли этот исходный материал в реальном космическом пространстве? Сейчас установлено наличие в межзвездной среде облаков пыли и газа, в которых обнаружены многие неорганические молекулы Н2О, NH3, SO, SiO, H2S и т.д. Осо­бенно показательно присутствие в космосе таких органических соединений, как формальдегид, цианацетилен, ацетальдегид, формамид, метилформиат.

Сенсацией явилось открытие кос­мических облаков этилового спирта с температурой 200 К и с концентрацией молекул 1012-1013 в 1 см3

. Подобные соедине­ния близки к биоорганическим молекулам или легко могут пре­вратиться в них. Таким образом, достоверно установлено, что в космосе имеются необходимые компоненты для синтеза бо­лее сложных соединений, важных для формирования белков, углеводов, нуклеиновых полимеров и липидов.

Следующие, более сложные звенья эволюционной цепочки обнаружены при изучении вещественного состава метеоритов и лунных пород, доставленных космическим аппаратом. В них обнаружены аминокислоты, алифатические и ароматические углеводороды, предшественники нуклеиновых кислот -аденин и гуанин, порфирин — простейший химический предше­ственник хлорофилла. И на земле, в древних отложениях с возрастом порядка сотен миллионов и нескольких миллиардов лет, обнаружено множество органических соединений, кото­рые подсказывают возможные пути возникновения жизни (ами­нокислоты, углеводороды, порфирины и др.).

Обращает на себя внимание следующий факт. В нашей га­лактике наиболее распространены водород, углерод, азот, кис­лород, составляющие основу живого. В земной же коре, в лунных породах и метеоритах их очень мало, а преобладают здесь кремний, алюминий, железо. Для первой, космической группы элементов характерна молекулярная форма существования и склонность к флюидному, текучему состоянию (жидкость, газ). Для планетарной группы элементов типично твердое агрегат­ное состояние в виде бесконечных кристаллических структур, в которых невозможно выделить отдельные молекулы.

Мертвые, застывшие, окаменевшие пространства Луны, Меркурия, Марса — результат утраты ими подвижных флюид­ных элементов, осуществляющих транспортировку вещества и энергии.

На Земле же до сих пор продолжаются более активные химические процессы. И это благодаря остаткам флюидной группы элементов: наличию значительного количества воды, метана, аммиака, других газов и жидкостей в атмосфере, гидросфере, в твердой коре и глубинных породах, откуда лег­кие соединения выделяются в форме вулканических газов или в виде общего газового обмена планеты и окружающей части космоса.

Химическая эволюция на поверхности планет реали­зуется тогда, когда энергия звездного излучения может превра­титься в энергию возбуждения молекулярных структур. Поэто­му решающим условием зарождения жизни на Земле явился фотосинтез.

Возраст нашей Земли более 4 млрд. лет, а следы остатков древних организмов насчитывают 3,2—3,8 млрд. лет.

Если сей­час в атмосфере Земли 78% азота и 21% кислорода, то более 3 млрд. лет назад в атмосфере Земли свободного кислорода прак­тически не было. Тогда температура поверхности Земли была намного выше современной, а атмосфера состояла из паров воды и примеси вулканических газов (азота, углекислого газа, аммиака, метана и др.) Единственным источником ничтож­ных количеств кислорода были реакции фотодиссоциации мо­лекул воды в верхних частях атмосферы под воздействием сол­нечной радиации.

Страницы: 1 2


Похожие материалы: