Регуляция развития нервной системы

Высокая степень организации такой структуры, как сетчатка, ставит новые проблемы. Если для сборки компьютера необходим человеческий мозг, то никто не контролирует мозг во время развития и установления его связей. Пока еще остается загадкой, как правильная «сборка» частей мозга приводит к появлению его уникальных свойств.

В зрелой сетчатке каждый тип клеток расположен в соответствующем слое или подслое и образует строго определенные связи с соответствующими клетками-мишенями. Такое устройство является необходимым условием правильного функционирования. Например, для развития нормальных ганглиозных клеток клетка-предшественник должна разделиться, мигрировать в определенное место, дифференцироваться в определенную форму и образовать специфические синаптические связи.

Аксоны этой клетки должны найти через значительное расстояние (оптический нерв) определенный слой клеток-мишеней в следующем звене синаптического переключения. Аналогичные процессы происходят во всех отделах нервной системы, в результате чего образуются сложные структуры со специфическими функциями.

Исследование механизмов образования таких сложных структур, как сетчатка, является одной из ключевых проблем современной нейробиологии. Понимание того, каким образом сложные взаимосвязи нейронов образуются в процессе индивидуального развития (онтогенезе), может помочь описать свойства и происхождение функциональных расстройств мозга. Некоторые молекулы могут играть ключевую роль в дифференциации, росте, миграции, образовании синапсов и выживании нейронов. Такие молекулы в настоящее время описываются все чаще. Интересно отметить, что электрические сигналы регулируют молекулярные сигналы, которые запускают рост аксонов и образование связей. Активность играет роль в установлении паттерна связей.

Генетические подходы позволяют идентифицировать гены, которые контролируют дифференциацию целых органов, таких как глаз в целом. Геринг с коллегами исследовал экспрессию гена eyeless у плодовой мушки Drosophila, который контролирует развитие глаз. Удаление этого гена из генома приводит к тому, что глаза не развиваются. Гомологичные гены у мышей и человека (известные как small eye и aniridia) похожи по структуре. Если гомологичный ген eyeless млекопитающих искусственно встроен и экспрессируется у мушки, то у этого животного развиваются дополнительные (мушиные по структуре) глаза на усиках, крыльях и ногах. Это позволяет предположить, что этот ген одинаково управляет образованием глаза у мухи или мыши, несмотря на полностью различные структуру и свойства глаз насекомых и млекопитающих.


Похожие материалы:

Понятие об основных этапах эмбрионального развития (дробления, гаструляция, образование тканей и организмов)
Существуют следующие основные типы онтогенеза: прямой и непрямой. Прямое развитие встречается в двух формах — неличиночного и внутриутробного, непрямое — в виде личиночного. Личиночный тип развития характеризуется тем, что в развитии ор ...

Органная специфичность метилирования и экспрессии промотора гена пататина
Промотор гена пататина класса I – это тканеспецифичный промотор, обеспечивающий экспрессию гена главным образом в клубнях. Ранее было показано, что невысокий уровень экспрессии обнаруживается и в других органах картофеля. Проведенный нами ...

Семейство ГРЕБНЕПАЛЫЕ (Ctenodactylidae)
Телосложение гребнепалых плотное, кургузое, мордочка короткая с длинными вибриссами, уши короткие и округлые. Длина тела 16—24 см, хвоста – 1 - 5 см. Лапы короткие и сильные с голыми подошвами и с 4 пальцами на каждой лапе. Пальцы вооруже ...