Действие генов » Генетический контроль экспрессии генов

Генетический контроль экспрессии генов
Страница 1

Что понимают под генетическим контролем экспрессии или регуляции действия генов? Это понятие означает, что экспрессия гена или набора генов может избирательно увеличиваться или уменьшаться (индуцироваться или репрессироваться) селективно. Регулирующее действие осуществляют белки, которые могут вмешиваться в транскрипцию. На экспрессию оказывает влияние изменение уровня АТФ, но это соединение не является результатом.

Сведения о регуляторных механизмах экспрессии генов по большей части получены в результате изучения образцов контроля активности генов, распространяемых на последовательность реакции в биосинтезе микроорганизмами белков, на гены фага лямбда, 5 S-гены Xenopus, гены, обеспечивающие скрещивание дрожжей, и гены, вовлеченные в контроль развития эукариотов. Сравнение механизмов, контролирующих действие генов у разных организмов, показывают чрезвычайное разнообразие в этих механизмах. В этом убеждает рассмотрение наиболее изученных систем. В применении к бактериям известно два механизма, один из которых контролирует активность ферментов, тогда как второй — синтез ферментов (синтез специфических белков). Сущность контроля (регуляции) активности ферментов иллюстрируется примером биосинтеза изолейцина, ранним предшественником которого является треонин и превращение которого в изолейцин осуществляется в результате пяти последовательных реакций с участием ферментов. Если к культуре бактерий, обладающих самостоятельной способностью синтезировать аминокислоты, в том числе изолейцин, прибавить изолейцин, то это приводит к прекращению клетками синтеза данной аминокислоты. Ростовые потребности клеток в это время обеспечиваются лишь экзогенным изолейцином. Механизм этого явления заключается в ингибировании (подавлении) активности фермента, катализирующего превращение треонина в последующий предшественник изолейцина. Синтез восстанавливается лишь тогда, когда экзогенный изолейцин истощается в среде.

Уникальность этого явления связана с тем, что ингибитор (конечный продукт) и нормальный субстрат имеют различную структуру и не конкурируют за один и тот же сайт связывания на ферменте. Можно сказать, что фермент несет два сайта связывания, один из которых специфичен для субстрата, другой — для ингибитора. Нормально субстрат прикрепляется к активному сайту фермента. Однако если к этому специфическому сайту прикрепляется ингибитор, то наступает структурное превращение (транзиция) в ферменте, вследствие чего нормальный субстрат больше не прикрепляется, что блокирует активность фермента, катализирующего конец биосинтеза либо одну из его стадий. Это явление получило название аллостерической транзиции

В основе аллостерического взаимодействия лежит любое измерение в активности фермента, вызываемое избирательным связыванием на втором сайте фермента, причем этот сайт не перекрывает сайта на ферменте для связывания субстрата. Фермент, по существу, становится химическим трансдуктором, позволяющим взаимодействие между двумя молекулами — ингибитором и субстратом, которое другим способом исключено. Определенные ферменты чувствительны к активированию при соединении их с эф- фекторной молекулой, отличной от каталитического субстрата. Кроме того, определенные ферменты чувствительны к активированию одним метаболитом и подавлению другим. Поскольку возможны мутации, которые могут поражать один ингибиторный сайт, не затрагивая другого, фенотипически они проявляются в резистентности клеток к ингибированию конечным продуктом и в выработке ими больших количеств конечного продукта. Таким образом, аллостерическая транзиция обеспечивает исключительно гибкую систему регуляции активности ферментов

Синтез ферментов регулируется с помощью индукции и репрессии ферментов, заключающихся в стимуляции или подавлении синтеза специфических ферментов как ответной реакции на добавление в среду компонента, повышающего концентрацию эффектора в клетке.

Примером индукции ферментов является случай с ферментами бактерий, обеспечивающих утилизацию лактозы. Бактерии приобретают способность сбраживать лактозу после некоторого культивирования в присутствии этого углевода. Это определяется синтезом ими b-галактозидазы, которая расщепляет лактозу на глюкозу и галактозу, а также b-галактозидпермеазы и b-галактозидтранс-цетилазы, обеспечивающих проникновение субстрата в клетку и ацетилирование некоторых токсических галактозидов в направлении их детоксификации (соответственно). Следовательно, лактоза индуцирует синтез ферментов, причем этот синтез является координированным .

Страницы: 1 2 3 4


Похожие материалы:

Пелорические цветы
Нам довольно хорошо известно строение цветка орхидеи. Три чашелистика, называемые сепалиями, чередуются с тремя лепестками, два из которых - петалии, а один, средний, видоизменён и называется губой. Но в растительном мире бывают исключени ...

Пороки и недостатки экстерьера
Осмотр лошади позволяет выявить особенности строения, достоинства и недостатки, пороки и заболевания. Различные недостатки экстерьера. Губы лошади могут иметь различные ранения; часто встречаются разрывы углов рта, жесткие мозолистые обр ...

Грибы и водоросли, входящие в состав таллома лишайников
Среди лихенизированных грибов 90% связаны с зелеными водорослями, способными фиксировать атмосферный азот, а остальные 10% - с сине-зелеными водорослями из родов Nostoc Adanson, Scytonema Ag., Stigonema Ag., Ehichothrix Ag. и Calothrix Ag ...