Информация » Концепции самоорганизации и управления синергетика и кибернетика » Синергетическая парадигма в современном естествознании

Синергетическая парадигма в современном естествознании
Страница 1

Современные физические концепции строения материи приписывают ей свойства динамизма, развития, эволюционный характер. Научному мировоззрению, по крайней мере, с XIX века была присуща идея развития

. Но после открытия Кельвином и Клаузиусом второго начала термодинамики господствовало достаточно пессимистическое представление, что базовым состоянием материи является состояние термодинамического равновесия (хаоса) – самого простого из всех возможных состояний системы, не обменивающейся энергией и веществом с окружающей средой. Господствующей тенденцией материи считалось стремление к разрушению спонтанно возникшей упорядоченности (в результате случайной маловероятной флуктуации) и возвращению к исходному хаосу. Следовательно, упорядоченное состояние вещества, которое наблюдается в доступной части Вселенной, возникло случайно, жизнь, как самая высокая из всех известных науке форм упорядоченности, тем более случайна и противоестественна. Это подтверждала, распространенная в 19 веке в космологии модель стационарной Вселенной. Что же заставило изменить этот, казалось бы, незыблемый взгляд на развитие, прийти к идее самоорганизации материи

, которая внедрилась в научное мировоззрение во второй половине ХХ века и коренным образом изменила старые взгляды на материю и процессы ее развития?

Истоки идеи самоорганизации систем.

Эта идея порождена увеличением числа исследований в различных областях естествознания, посвященных кооперативным эффектам в открытых неравновесных системах. Первоначально в 60-х годах ХХ столетия такие исследования проводились независимо в разных дисциплинах, позже (в 70-х годах) они стали предметом сравнения, и в них обнаружилось много общего. Необходимо отметить, что в научной литературе одни авторы используют термин «самоорганизация», другие «синергетика». К концепции самоорганизации через разработку термодинамики открытых систем пришел бельгийский ученый Илья Пригожин (р. 1927 г.). А термин «синергетика» ввел немецкий физик Герман Хакен (р. 1927 г.). Слово «синергетика» древнегреческого происхождения, означает «сотрудничество, совместное действие». Лингвистический смысл слов различен, но концептуальных расхождений между этими научными направлениями нет. Как синергетика, так и теория самоорганизации исследуют процессы самоорганизации и самодезорганизации в открытых системах физической, химической, биологической, экологической, социальной и другой природы.

Сегодня наука считает все известные системы от самых малых (элементарные частицы), до самых больших (Вселенная) – открытыми, обменивающимися энергией, (или) веществом и (либо) информацией с окружающей средой и находящимися, как правило, в состоянии, далеком от термодинамического равновесия. А развитие таких систем, как стало известно, протекает путем образования нарастающей упорядоченности. На такой основе возникло представление о самоорганизации вещественных систем. В широком плане понятие самоорганизации

отражает фундаментальный принцип природы, лежащий в основе наблюдаемого развития от менее сложных к более сложным и упорядоченным формам организации вещества. Но у этого понятия есть и более узкое значение, непосредственно характеризующее способ реализации перехода от простого к более сложному. В таком значении самоорганизацией называют природные скачкообразные процессы, переводящие открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности по сравнению с исходным.

Критическое состояние

– это состояние крайней неустойчивости, достигаемое открытой неравновесной системой в ходе предшествующего периода плавного, эволюционного развития. Прежде чем привести примеры самоорганизации, необходимо уточнить, что же считать усложнением элементов и систем, их переходом от более простых к более сложным формам. Понятия «простой» и «сложный» всегда относительны, их смысл выявляется только при сопоставлении свойств родственных объектов. Так, протон сложен относительно кварков, но прост относительно атома водорода; атом сложен относительно протона и электрона, но прост относительно молекулы и т.д. При этом мы видим, что сложные объекты обладают новыми качествами, которых лишены исходные простые элементы, доставляющие их. Таким образом, природу можно представить как цепочку нарастающих по сложности элементов

. Процессы объединения «простых» элементов с образованием «сложных» систем протекают лишь при выполнении определенных условий. Например, если температура (энергия) окружающей среды превышает энергию связи двух частиц, то они не смогут удерживаться вместе. При снижении температуры до значений, при которых энергия среды и энергия связи частиц окажутся равными, наступает критический момент, и дальнейшее снижение температуры делает возможным процесс фиксирования частиц (например, протона и электрона) в атоме водорода. Намного сложнее обстоит дело при соединении атомов в молекулы. Здесь также существуют пороговые значения параметров (температуры, плотности), называемые критическими значениями, которые отделяют область возможного образования от области, где этот процесс невозможен. Затем идут новые уровни сложности и упорядоченности вещества. Наиболее высокий уровень упорядоченности, известный науке – живая система.

Страницы: 1 2 3


Похожие материалы:

JBL Gyrodol
Лекарство против жаберных и кожных сосальщиков и других червеобразных паразитов • Борется не только с жабровыми и кожными сосальщиками (Trematoda), но и с ленточными червями (Cestoda) • Справляется с инфекциями в течение 6 часов! • Сод ...

Предмет химии
Химия — это естественная наука, изучающая состав, свойства и химические превращения веществ, явления, которые сопровождают эти превращения, а также рассматривает вопросы использования результатов этих превращений. Самое краткое определени ...

Классификации круговоротов
Заключительным этапом при изучении биологического круговорота (БИК) является классификация, которая сводится к упорядочению полученного материала, определению специфики происходящих в БИК процессов и последующему установлению характерных ...