Редупликация ДНК
Страница 1

Принцип комплементарности, лежащий в основе структуры ДНК, позволяет понять, как синтезируются новые молекулы ДНК при делении клетки.

Этот синтез основан на замечательной способности молекулы ДНК к удвоению и лежит в основе передачи наследственных свойств от материнской клетки к дочерним. Процесс удвоения молекул ДНК происходит в клетке незадолго перед ее делением.

Спиральная двутяжевая цепь ДНК начинает с одного конца расходиться, и на каждой цепи из находящихся в окружающей среде свободных нуклеотидов собирается новая цепь. Сборка новой цепи идет в точном соответствии с принципом комплементарности. Против каждого А встает Т, против Г — Ц и т. д. В результате вместо одной молекулы ДНК возникают две молекулы такого же точно нуклеотидного состава, как и первоначальная. Этот процесс называется редупликацией, т. е. удвоением. Одна цепь в каждой вновь образовавшейся молекуле ДНК происходит из первоначальной молекулы, а другая синтезируется вновь.

Синтез ДНК представляет собой ферментативный процесс. Он осуществляется в результате деятельности фермента ДНК — полимеразы. ДНК только задает порядок расположения нуклеотидов, а процесс редупликации осуществляет белок- Предполагается, что фермент как бы ползет вдоль длинной двутяжевой молекулы ДНК от одного конца до другого и позади себя оставляет раздвоенный «хвост».

РНК. Существует несколько разных РНК- Они носят название в зависимости от выполняемой в клетке функции. Один вид РНК называется транспортные РНК (т-РНК), так как они транспортируют аминокислоты к месту синтеза белка. Другие РНК называются информационными (и-РНК): эти РНК переносят информацию о структуре белка, который должен синтезироваться.

Структура РНК очень сходна со структурой ДНК, однако есть и отличия. В структуре РНК нет двойной спирали, по своему строению она сходна с одной из цепей ДНК- РНК, как и ДНК, — полимер. Ее мономерами, так же как и у ДНК, служат нуклеотиды. Нуклеотиды РНК близки, хотя и не тождественны, нуклеотидам ДНК. Так же как и нуклеотиды ДНК, нуклеотиды РНК состоят из остатков азотистого основания, пентозы и фосфорной кислоты. Азотистые основания в трех нуклеотидах РНК такие же, как у ДНК (аденин, гуанин и цитозин). В четвертом нуклеотиде вместо тимина присутствует очень близкий к нему по строению урацил, и нуклеотид называется урациловым (У). Нуклеотиды РНК отличаются от нуклеотидов ДНК и по характеру углевода: в нуклеотидах ДНК углеводом является дезок-сирибоза, а в РНК — рибоза. Характер соединения нуклеотидов при образовании цепей РНК такой же, как при образовании цепей ДНК: нуклеотиды сцепляются друг с другом ковалентными связями между рибозой одного нуклеотида и фосфорной кислотой соседнего.

Как уже сказано, существует несколько типов РНК. Т-РНК имеют самые короткие молекулы, их молекулярная масса всего 25—30 тыс. И-РНК по размерам гораздо больше, чем т-РНК. Их молекулярная масса колеблется от 100 000 до 1000 000. Содержание РНК в клетке непостоянно. Оно сильно увеличивается, когда в клетках происходит интенсивный синтез белка.

АТФ. Это сокращенное название аденозинтрифосфорной кислоты. АТФ содержится в каждой клетке животных и растений. Количество АТФ колеблется и в среднем составляет 0,04% (на сырую массу клетки). Наибольшее количество АТФ содержится в скелетных мышцах — 0,2—0,5%. По химической структуре АТФ является нуклеотидом, и, как у всякого нуклеотида, в ней имеется азотистое основание (аденин), пентоза (рибоза) и фосфорная кислота. Однако в части, содержащей фосфорную кислоту, молекула АТФ имеет существенные отличия от обычных нуклеотидов. У нее в этой части сконденсированы три молекулы фосфорной кислоты (рис. 74). Это очень неустойчивая структура. Самопроизвольно, а особенно легко под влиянием фермента в АТФ разрывается связь между Р и О, и к f освободившимся связям присоединяется одна или две молекулы воды, причем отщепляется одна или две молекулы фосфорной кислоты. Если отщепляется одна молекула фосфорной кислоты, то АТФ переходит в АДФ, т. е. в аденозиндифосфорную кислоту; если же отщепляются две молекулы фосфорной кислоты, то АТФ переходит в АМФ, т. е. в аденозинмонофосфорную кислоту. Реакция отщепления каждой молекулы фосфорной кислоты от АТФ сопровождается большим энергетическим эффектом, а именно отщепление одной грамм-молекулы фосфорной кислоты сопровождается освобождением почти 40 кдж (10 000 кал). Это очень большая величина. Все другие экзотермические реакции клетки сопровождаются значительно меньшим выходом Энергии. Самые эффективные из них дают не более 8—10 кдж (2000—2500 кал). Чтобы под черкнуть такую особенно высокую энергетическую эффективность фосфорнокислородной связи в АТФ, ее называют связью, богатой энергией, или макроэргической связью, и наличие такой связи обозначают не черточкой, как обычно, а знаком. В АТФ имеются две макроэргические связи.

Страницы: 1 2


Похожие материалы:

Космос и биосфера Земли. Общие фундаментальные принципы и законы
Чтобы понять законы экологии и представить себе возможные последствия неудачного сосуществования человека с природой, необходимо понять, что такое жизнь, как она возникла, какова ее цель, есть ли общие принципы и законы Космоса, в частно ...

Универсальность и происхождение генетического кода
Генетический код ядерной ДНК универсален, т. к. он одинаков у всех живых существ, т. е. у всех живых существ используются одинаковые наборы кодонов. Признание универсального характера генетического кода является выдающимся современным док ...

Результаты и обсуждение исследования
Результаты начального этапа микробиологического исследования почвенных образцов представлены в приложении 2 и на рисунке 1. Таблица 1 Общая численность бактерий в почвенном профиле дерновой альфегумусовой глеевой почвы Горизонты (р ...